Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531616

RESUMO

Drug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.e., limma, DESeq2, and MultiPLIER) and prioritized the resulting drug repurposing candidates for four low-survival human cancers. Our results were enriched for candidates that had been used in clinical trials or performed well in the PRISM drug screen. Additionally, we found that pamidronate and nimodipine, drugs predicted to be efficacious against the brain tumor glioblastoma (GBM), inhibited the growth of a GBM cell line and cells isolated from a patient-derived xenograft (PDX). Our results demonstrate that by applying multiple disease-associated gene signature methods, we prioritized several drug repurposing candidates for low-survival cancers.

2.
PeerJ ; 12: e16824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436005

RESUMO

Authors are often faced with the decision of whether to maximize traditional impact metrics or minimize costs when choosing where to publish the results of their research. Many subscription-based journals now offer the option of paying an article processing charge (APC) to make their work open. Though such "hybrid" journals make research more accessible to readers, their APCs often come with high price tags and can exclude authors who lack the capacity to pay to make their research accessible. Here, we tested if paying to publish open access in a subscription-based journal benefited authors by conferring more citations relative to closed access articles. We identified 146,415 articles published in 152 hybrid journals in the field of biology from 2013-2018 to compare the number of citations between various types of open access and closed access articles. In a simple generalized linear model analysis of our full dataset, we found that publishing open access in hybrid journals that offer the option confers an average citation advantage to authors of 17.8 citations compared to closed access articles in similar journals. After taking into account the number of authors, Journal Citation Reports 2020 Quartile, year of publication, and Web of Science category, we still found that open access generated significantly more citations than closed access (p < 0.0001). However, results were complex, with exact differences in citation rates among access types impacted by these other variables. This citation advantage based on access type was even similar when comparing open and closed access articles published in the same issue of a journal (p < 0.0001). However, by examining articles where the authors paid an article processing charge, we found that cost itself was not predictive of citation rates (p = 0.14). Based on our findings of access type and other model parameters, we suggest that, in the case of the 152 journals we analyzed, paying for open access does confer a citation advantage. For authors with limited budgets, we recommend pursuing open access alternatives that do not require paying a fee as they still yielded more citations than closed access. For authors who are considering where to submit their next article, we offer additional suggestions on how to balance exposure via citations with publishing costs.


Assuntos
Complexos Atriais Prematuros , Publicação de Acesso Aberto , Humanos , Salários e Benefícios , Benchmarking , Biologia
3.
PLoS One ; 19(1): e0296328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165902

RESUMO

The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Variants in SETBP1 can result in three different diseases determined by the introduction (germline vs. somatic) and location of the variant. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1 and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcriptional regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.


Assuntos
Proteínas de Transporte , Proteínas Nucleares , Humanos , Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/genética , Expressão Gênica , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
BMC Pharmacol Toxicol ; 25(1): 5, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167211

RESUMO

BACKGROUND: Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. METHODS: We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. RESULTS: We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~ 85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. CONCLUSIONS: Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.


Assuntos
Regulação da Expressão Gênica , Fígado , Humanos , Masculino , Feminino , Fígado/metabolismo , Farmacovigilância , Expressão Gênica
5.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260631

RESUMO

Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From >85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.

6.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076822

RESUMO

Background: Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-ß plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFß, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. Methods: Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in an independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. Results: Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We validated 51 ligand-receptor pairs in an independent dataset that included two known Alzheimer's disease risk genes: APP and APOE. 17 (14 upregulated and 3 downregulated in Alzheimer's disease) of the 51 interactions also had the same downstream target gene. Most of the signaling mediators of these interactions were not differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had repressor activity in Alzheimer's disease, along with decreased WNT and p53 activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and activator activity of NFIL3, an NFkB signaling-associated transcription factor. Conclusions: Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.

7.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109675

RESUMO

SUMMARY: High-throughput sequencing technologies have enabled cross-species comparative transcriptomic studies; however, there are numerous challenges for these studies due to biological and technical factors. We developed CoSIA (Cross-Species Investigation and Analysis), a Bioconductor R package and Shiny app that provides an alternative framework for cross-species transcriptomic comparison of non-diseased wild-type RNA sequencing gene expression data from Bgee across tissues and species (human, mouse, rat, zebrafish, fly, and nematode) through visualization of variability, diversity, and specificity metrics. AVAILABILITY AND IMPLEMENTATION: https://github.com/lasseignelab/CoSIA.


Assuntos
Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Software , Animais , Humanos , Camundongos , Ratos , Análise de Sequência de RNA , Peixe-Zebra , Drosophila , Caenorhabditis elegans
8.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873221

RESUMO

Background: The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Distinct SETBP1 variants have been linked to three different diseases. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. Results: To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1, and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcription regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. Conclusions: This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.

9.
CBE Life Sci Educ ; 22(3): ar28, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279089

RESUMO

Traditional biology curricula depict science as an objective field, overlooking the important influence that human values and biases have on what is studied and who can be a scientist. We can work to address this shortcoming by incorporating ideological awareness into the curriculum, which is an understanding of biases, stereotypes, and assumptions that shape contemporary and historical science. We surveyed a national sample of lower-level biology instructors to determine 1) why it is important for students to learn science, 2) the perceived educational value of ideological awareness in the classroom, and 3) hesitancies associated with ideological awareness implementation. We found that most instructors reported "understanding the world" as the main goal of science education. Despite the perceived value of ideological awareness, such as increasing student engagement and dispelling misconceptions, instructors were hesitant to implement ideological awareness modules due to potential personal and professional consequences.


Assuntos
Currículo , Estudantes , Humanos , Aprendizagem , Medo , Biologia/educação
10.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37362157

RESUMO

Background: Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified that women were more likely to experience drug adverse events (i.e., any unintended effects of medication), and men were more likely to experience adverse events that resulted in hospitalization or death. These sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters. Methods: We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System (FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory relationships. Results: We identified liver-specific gene-regulatory differences for drug metabolism genes between males and females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In addition, we found that ~85% of SBAE-associated drug targets had sex-biased gene expression or were core genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug targets. Lastly, we provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource for the research community. Conclusions: Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism genes that are differentially expressed and regulated between males and females. These SBAE-associated drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict SBAEs.

11.
bioRxiv ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37163017

RESUMO

High throughput sequencing technologies have enabled cross-species comparative transcriptomic studies; however, there are numerous challenges for these studies due to biological and technical factors. We developed CoSIA (Cross-Species Investigation and Analysis), an Bioconductor R package and Shiny app that provides an alternative framework for cross-species transcriptomic comparison of non-diseased wild-type RNA sequencing gene expression data from Bgee across tissues and species (human, mouse, rat, zebrafish, fly, and nematode) through visualization of variability, diversity, and specificity metrics.

12.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849790

RESUMO

Daphnia species are well-suited for studying local adaptation and evolutionary responses to stress(ors) including those caused by algal blooms. Algal blooms, characterized by an overgrowth (bloom) of cyanobacteria, are detrimental to the health of aquatic and terrestrial members of freshwater ecosystems. Some strains of Daphnia pulicaria have demonstrated resistance to toxic algae and the ability to mitigate toxic algal blooms. Understanding the genetic mechanism associated with this toxin resistance requires adequate genomic resources. Using whole-genome sequence data mapped to the Daphnia pulex reference genome (PA42), we present reference-guided draft assemblies from one tolerant and one sensitive strain of D. pulicaria, Wintergreen-6 (WI-6), and Bassett-411 (BA-411), respectively. Assessment of the draft assemblies reveal low contamination levels, and high levels (95%) of genic content. Reference scaffolds had coverage breadths of 98.9-99.4%, and average depths of 33X and 29X for BA-411 and WI-6, respectively. Within, we discuss caveats and suggestions for improving these draft assemblies. These genomic resources are presented with a goal of contributing to the resources necessary to understand the genetic mechanisms and associations of toxic prey resistance observed in this species.


Assuntos
Cladóceros , Microcystis , Pulicaria , Animais , Daphnia/genética , Ecossistema
13.
Gigascience ; 10(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599334

RESUMO

BACKGROUND: High-quality genomic resources facilitate investigations into behavioral ecology, morphological and physiological adaptations, and the evolution of genomic architecture. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. FINDINGS: We present a high-quality chromosome-level reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and lizard assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes. We also used this new assembly to provide improved reference-based genome assemblies for 34 additional Sceloporus species. Finally, we used RNAseq and whole-genome resequencing data to compare 3 assemblies, each representing an increased level of cost and effort: Supernova Assembly with data from 10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly Assembly that added data from Pacific Biosciences sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq and single-nucleotide polymorphism calling, but the chromosome-level scaffolds provided by the addition of HiC data allowed synteny and whole-genome association mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but provided negligible gains in scaffold length. CONCLUSIONS: These new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology.


Assuntos
Lagartos , Animais , Cromossomos/genética , Genoma , Genômica , Lagartos/genética , Sintenia
14.
Ecol Evol ; 8(12): 6169-6182, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988440

RESUMO

Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles-two snakes and one lizard-in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.

15.
Biopreserv Biobank ; 14(4): 324-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27002638

RESUMO

Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community.


Assuntos
Criopreservação/métodos , Fibroblastos/citologia , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/genética , Bancos de Espécimes Biológicos , Diferenciação Celular , Linhagem Celular , Fibroblastos/patologia , Ataxia de Friedreich/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Doenças Raras , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...